Distinct and opposite diversifying activities of terminal transferase splice variants

The short splice variant of mouse terminal deoxynucleotidyl transferase (TdTS) catalyzes the addition of nontemplated nucleotides (N addition) at the coding joins of B cell and T cell antigen receptor genes. However, the activity and function of the long isoform of TdT (TdTL) have not been determined. We show here, in vitro and in vivo, that TdTL is a 3′→5′ exonuclease that catalyzes the deletion of nucleotides at coding joins. These findings suggest that the two TdT isoforms may act in concert to preserve the integrity of the variable region of antigen receptors while generating diversity.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells

Article Open access 20 June 2023

Origin and evolutionary malleability of T cell receptor α diversity

Article Open access 21 June 2023

Alternative splicing and genetic variation of mhc-e: implications for rhesus cytomegalovirus-based vaccines

Article Open access 19 December 2022

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl. Acad. Sci. USA73, 3628–3632 (1976). ArticleCASGoogle Scholar
  2. Lewis, M. S. The mechanism of V(D)J joining: Lessons from molecular, immunological, and comparative analyses. Adv. Immunol.56, 27–150 (1994). ArticleCASGoogle Scholar
  3. Fugmann, S. D. et al. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Ann. Rev. Immunol.18, 497–527 (2000). ArticleGoogle Scholar
  4. Oettinger, M. A. V(D)J recombination: on the cutting edge. Curr. Opin. Cell Biol.11, 325–329 (1999). ArticleCASGoogle Scholar
  5. Arstilla, P. T. et al. A direct estimate of the human αβ T cell receptor diversity. Science286, 958–961 (1999). ArticleGoogle Scholar
  6. Cabaniols, J. P. et al. Most αβ T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med.194, 1385–1390 (2001). ArticleCASGoogle Scholar
  7. Komori, T., Okada, A., Stewart, V. & Alt. F. W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science261, 1171–1175 (1993). ArticleCASGoogle Scholar
  8. Gilfillan, S., Dierich, A., Lemeur, M., Benoist, C. & Mathis, D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science261, 1175–1178 (1993). ArticleCASGoogle Scholar
  9. Doyen, N. et al. Differential splicing in mouse thymus generates two forms of terminal deoxynucleotidyl transferase. Nucleic Acids Res.21, 1187–1191 (1993). ArticleCASGoogle Scholar
  10. Koiwai, O. et al. Isolation and characterization of bovine and mouse terminal deoxynucleotidyl transferase cDNAs expressible in mammalian cells. Nucleic Acids Res.14, 5777–5792 (1986). ArticleCASGoogle Scholar
  11. Farrar, Y. J., Evans, R. B., Beach, C. M. & Coleman, M. S. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: identification of peptides in the DNA binding domain. Biochemistry30, 3075–3082 (1991). ArticleCASGoogle Scholar
  12. Yang, B., Gathy, K. N. & Coleman, M. S. Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase. J. Biol. Chem.269, 11859–11868 (1994). CASPubMedGoogle Scholar
  13. Benedict, C. L. & Kearney, J. F. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity5, 607–617 (1999). ArticleGoogle Scholar
  14. Bentolila, L. A. et al. The two isoforms of mouse terminal deoxynucleotidyl transferase differ in both the ability to add N regions and subcellular localization. EMBO J.14, 4221–4229 (1995). ArticleCASGoogle Scholar
  15. Feeney, A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med.172, 1377–1390 (1990). ArticleCASGoogle Scholar
  16. Lafaille, J., DeCloux, A., Bonneville, M, Takagaki, Y. & Tonegawa, S. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of V-(D)-J joining. Cell59, 859–870 (1989). ArticleCASGoogle Scholar
  17. McVay, L. D., Carding, S. R., Bottomly, K. & Hayday, A. C. Regulated expression and structure of T cell receptor γ/δ transcripts in human thymic ontogeny. EMBO J.10, 83–91 (1991). ArticleCASGoogle Scholar
  18. Schwager, J., Burckert, N., Courtet, M. & Du Pasquier, L. The ontogeny of diversification at the immunoglobulin heavy chain locus in Xenopus. EMBO J.10, 2461–2470 (1991). ArticleCASGoogle Scholar
  19. Carlsson, L., Overmo, C. & Holmberg, D. Developmentally controlled selection of antibody genes: characterization of individual VH7183 genes and evidence for stage-specific somatic diversification. Eur. J. Immunol.22, 71–78 (1992). ArticleCASGoogle Scholar
  20. Medina, C. A. & Teale, J. M. Restricted κ chain expression in early ontogeny: biased utilization of Vκ exons and preferential Vκ-Jκ recombinations. J. Exp. Med.177, 1317–1330 (1993). ArticleCASGoogle Scholar
  21. Rothenberg, E. & Triglia, D. Clonal proliferation unlinked to terminal deoxynucleotidyl transferase synthesis in thymocytes of young mice. J. Immunol.130, 1627–1633 (1983). CASPubMedGoogle Scholar
  22. Benedict, C. L., Gilfillan, S. & Kearney, J. F. The long isoform of terminal deoxynucleotidyl transferase enters the nucleus and, rather than catalyzing nontemplated nucleotide addition, modulates the catalytic activity of the short isoform. J. Exp. Med.193, 89–99 (2001). ArticleCASGoogle Scholar
  23. Melchers, F. et al. Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol.7, 214–227 (1995). ArticleCASGoogle Scholar
  24. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in pre-B cells after functional immunoglobulin heavy chain rearrangement. Immunity3, 601–608 (1995). ArticleCASGoogle Scholar
  25. Mazur, D. J. & Perrino, F. W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases. J. Biol. Chem.274, 19655–19660 (1999). ArticleCASGoogle Scholar
  26. Schlissel, M. S. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol. Cell Biol.18, 2029–2037 (1998). ArticleCASGoogle Scholar
  27. Livák, F. L. & Schatz, D. G. Identification of V(D)J recombination coding end intermediates in normal thymocytes. J. Mol. Biol.267, 1–9 (1997). ArticleGoogle Scholar
  28. Roth, D. B., Zhu, C. & Gellert, M. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA90, 10788–10972 (1993). ArticleCASGoogle Scholar
  29. Schlissel, M. S., Constantinescu, A., Morrows, T., Baxter, M. & Peng, A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell-cycle regulated. Genes Dev.7, 2520–2532 (1993). ArticleCASGoogle Scholar
  30. Hoss, M. et al. A human DNA editing enzyme homologous to the Escherichia coli Dna/Q/MutD protein. EMBO J.18, 3868–3875 (1999). ArticleCASGoogle Scholar
  31. Bernad, A., Blanco, L., Lazaro, J. M., Martin, G. & Salas, M. A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell59, 219–228 (1989). ArticleCASGoogle Scholar
  32. Reha-Krantz, L. J. et al. DNA polymerization in the absence of exonucleolytic proofreading: In vivo and in vitro studies. Proc. Natl. Acad. Sci. USA88, 2417–2421 (1991). ArticleCASGoogle Scholar
  33. Derbyshire, V., Grindley, N. D. & Joyce, C. M. The 3′→5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J.1, 17–24 (1991). ArticleGoogle Scholar
  34. Reha-Krantz, L. J. & Nonay, R. L. Genetic and biochemical studies of bactriophage T4 DNA polymerase 3′→5′-exonuclease activity. J. Biol. Chem.268, 27100–27108 (1983). Google Scholar
  35. Wang, J., Yu, P., Lin, T. C., Konigsberg, W. H. & Steitz, T. A. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochemistry35, 8110–8119 (1996). ArticleCASGoogle Scholar
  36. Purugganan, M. M., Shah, S., Kearney, J. F. & Roth, D. B. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res.29, 1638–1646 (2001). ArticleCASGoogle Scholar
  37. Takahara, K. et al. Alternative splicing of bovine terminal deoxynucleotidyl transferase cDNA. Biosci. Biotech. Biochem.58, 786–787 (1994). ArticleCASGoogle Scholar
  38. Boulé, J. B., Rougeon, F. & Panicolaou, C. Comparison of the two murine deoxynucleotidyl transferase. J. Biol. Chem.275, 28984–28988 (2000). ArticleGoogle Scholar
  39. Fang, W. et al. Frequent aberrant immunoglobulin gene rearrangements in pro-B cells revealed by a bcl-xL transgene. Immunity4, 291–299 (1996). ArticleCASGoogle Scholar
  40. Victor, K. D., Vu, K. & Feeney, A. J. Limited junctional diversity in κ light chains. J. Immnunol.152, 3467 (1994).
  41. Whitcomb, E. A. & Brodeur, P. H. Rearrangement and selection in the developing Vκ repertoire of the mouse: an analysis of the usage of two Vκ gene. J. Immunol.160, 4904–4913 (1998). CASPubMedGoogle Scholar
  42. Levine, M. TdT effects during κ light chain recombination and influence on BCR selection. Thesis, Yale Univ. (2000).

Acknowledgements

We thank S. Gilfillan and D. Mathis for the TdTL and TdTS cDNA clones; D. J. Mazure and F. W. Perrino for hTREX2; M. Oettinger for full-length RAG-1 and RAG-2; L. Gartland for FACS; X. Y. Liu for technical assistance; M. A. Anderson, D. S. Nelson, P. D. Burrows for helpful discussions; and A. Brookshire for preparing this manuscript. Supported by NIH grants AI 523133, AI 07051, AI36420 and the Howard Hughes Medical Institute (D. B. R.).

Author information

  1. Mary M. Purugganan Present address: Cain Project in Engineering and Professional Communication, Rice University, P.O. Box 1892, MS345, Houston, TX, 77251-1892, USA

Authors and Affiliations

  1. Division of Developmental and Clinical Immunology, Department of Microbiology, The University of Alabama at Birmingham, 378 Wallace Tumor Institute, Birmingham, 35294, AL, USA To-Ha Thai & John F. Kearney
  2. Department of Immunology, M929, Baylor College of Medicine, 1 Baylor Plaza, Houston, 77030, TX, USA Mary M. Purugganan & David B. Roth
  1. To-Ha Thai